
(V ->*^
1 k "*

CM

oe:
CO

AD7V6957

MEMORANDUM REPORT NO. 2199

SYMAP2 - AN OPERATIONAL COMPUTER-BASED

ALGEBRAIC SYMBOL MANIPULATOR

by

George C. Francis

June 1972

Approved for public release; distribution unlimited.

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating or
sponsoring activity is prohibited.

Additional copies of this report may be purchased from
the U.S. Department of Commerce, National Technical
Information Service, Springfield, Virginia 221S1

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2199

JUNE 1972

SYMAP2 - AN OPERATIONAL COMPUTER-BASED
ALGEBRAIC SYMBOL MANIPULATOR

George C. Francis

Applied Mathematics Division

Approved for public release; distribution unlimited.

RDT&E Project No. lT06ll02All+B

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2199

G-eorge C. Francis/ngh
Aberdeen Proving Ground, Md.
June 1972

SYMAP2 - AN OPERATIONAL COMPUTER-BASED
ALGEBRAIC SYMBOL MANIPULATOR

ABSTRACT

SYMAP2, a FORTRAN computer program for symbolic manipulation of

algebraic forms, is operational on the BRIESC 2 computer. FORTRAN-

like formulas can be built up, combined, displayed, differentiated,

modified through substitution or change of variables, and operated on

in various other ways, either to verify or eliminate the need for many

tedious and lengthy hand transformations. No knowledge of FORTRAN

programming as such is required for use of SYMAP2. This report

includes numerous examples with detailed explanation of each.

TABLE OF CONTENTS

Page

ABSTRACT .3

LIST OF ILLUSTRATIONS .7

I. BACKGROUND .9

II. THE MASAITIS L-SYSTEM AND SYMAP2 -10

III. INPUT TO THE SYMAP2 MANIPULATOR -12

A. Part (l) Input -12

B. Part (2) Input .12

C. Part (3) Input . Ik

D. Part (h) Input lU

IV. SPECIFYING MANIPULATIONS -15

A. Basic Manipulations 15

B. Composite Manipulations 19

C. Control Manipulations 21

V. EXPOSITORY EXAMPLES 23

A. Indexed Arrays and Controls 2h

B. Product over an Index Set 26

C. Sum over a Double Index Set -28

D. Substitution in Manipulating Trigonometric
Identities -30

E. Indefinite and Definite Integration 3h

F. Symbolic Differentiation 36

G. Differentiation of a Function Defined Implicitly . . 3&

H. Differentiation of Two Functions Defined Implicitly, hi

I. Change of Variables ^3

J. Taylor's Series in Two Variables U5

VI. PRESENT STATUS OF SYMAP2 AND FUTURE PLANS 55

REFERENCES 57

DISTRIBUTION LIST 59

LIST OF ILLUSTRATIONS

Figure Page

1. Summary of O])tions, Part (2) Input lU

2(a). Summary of Principal Basic Manipulation Types 19

2("b). Summary of Principal Basic Manipulation Types 20

'■). Input, Parts (2), (3), (k), for Array Example 25

k. Principal Output, Array Example 26

5. Product over a Single Index Set 27

Li. Sum over a Double Index Set 30

7. Input for Substitution Example 32

6. Principal Output, Substitution Example 33

9. Integrands Allowing Complete Integration in x 35

10. Principal Output, Integration Examples 35

11. Input for Differentiation Example 37

12. Principal Output, Differentiation Example 37

13. Change of Variables Example U5

lU. Flow Diagram, Taylor's Series Example ^7

15. Detail of Boxes 11 through l8, Taylor's Series 52

16. Principal Output, Taylor's Series Example 55

I. BACKGROUND

Traditionally the electronic computing machine has been used as a

large, fast, accurate device for numerical calculations where either

many steps, many decimal places of accuracy, or complicated logic as to

what steps to take next are involved. In recent years there have been

a number of attempts to extend the speed, the capacity, and the logic

of the computer to a variety of non-numeric or partially non-numeric

applications . The computer-based algebraic symbol manipulator is one

such extension.

A mathematician, or other scientist or engineer, using pencil and

paper often has to carry out tedious algebraic and related symbol

manipulations in transforming mathematical expressions to more useful

forms. Obvious examples include expanding powers of sums, grouping

terms having some common factor, performing differentiation with

respect to one or more variables, changing coordinate systems, and the

like. In the process it is easy to make careless errors such as losing

a sign, overlooking one term, or depending on faulty recollection of

some mathematical rule. Electronic computers can be programmed to

carry out many symbolic transformations quickly and accurately and thus

save the mathematician both time and effort as well as reduce the

likelihood of a careless error. SYMAP2 was designed to do just that

and is now operational at BRL.

Earlier attempts to achieve some of these goals have been made
2

both at BRL and elsewhere. P. Smith successfully attacked the

differentiation problem at BRL using a Polish suffix notation

internally. Very little use of his programs has been made locally.

While these programs still exist within ARDCf*they are programmed in

the FORAST language rather than the more standard FORTRAN IV. SYMAP1

is a more recent algebraic symbol manipulator designed at BRL by the

author , and it is available in FORTRAN IV. It is largely restricted

to manipulations of polynomials, although decimal exponents are

permitted and some trigonometric functions are allowed as coefficients.

Differentiation of polynomials in several variables is included, and

* BattUtlc ReAeaAch Labona£o>vLeA
** Aberdeen RQJ> catch £ Ve.ve.lopme.nt Center

a variety of substitutions can be performed. 3YMAP2, the subject of

this report, includes all these capabilities and many more.

Other algebraic symbol manipulators have been devised elsewhere.

Brief discussions of some of these are to be found in surveys by

Bobrow and Sammet , which contain extensive bibliographies. Perhaps

the best known of these are FORMAC and ALTRAN . None of these outside

manipulators is available on computers at BRL since most of them were

designed for other specific computers. Brief comparisons with 3YMAP2

will appear occasionally later in this report.

II. THE MASAITIS L-SYSTEM AND SYMAP 2

C. Masaitis of the Applied Mathematics Division of BRL has developed

an original approach to the algebraic symbol manipulation problem. It

is called the L-System and is described in detail in an as yet
Q

unpublished manuscript . A few comments are in order here, as SYMAP 2

is an implementation by the author and Miss V. Woodward of AMD of much

of the L-System with minor changes for operational expediency. The

implementation in turn influenced certain alternative design character-

istics, and the L-System was modified to reflect some of these.

A special internal notation (L-notation) was developed by Masaitis

for mathematical forms in the L-System. This notation, while better

read by machines than by humans, removes the inherent ambiguity of

some standard mathematical conventions and makes precise many important

relationships between component parts of the mathematical forms no

matter how complicated the forms. Given this notation and Masaitis'

related precise rules of manipulation, the computer program SYMAP2

could be implemented and has been within the constraints of the

computers currently available at BRL. Flow charts and related details

of the implementation are presented in another as yet unpublished
9

report .

In general any mathematical form is permitted which can be built

up from constants and primitives by repeated application of the

operations of addition, subtraction, multiplication, division,

10

exponentiation, and certain standard or general functions of one or

more variables. The set of simple functions of one variable implemented

at present includes log , loS-,0, sin, cos, tan, cot, sec, esc, arc sin,

arc cos, arc tan, arc cot, sinh, cosh, and tanh. Others could be added

if needed. The user can also specify such general functions as f(x),

g(u,v), etc. Repeated applications of these operations can build up

composite expressions of considerable complexity which in turn can be

operated on further.

Additional operations include summations over one or more sets of

integer indexes, products over index sets, indefinite integration ,

definite integration , differentiation, substitution of one algebraic

form for another in a third, solving (small) systems of linear algebraic

equations, change of variables, and several kinds of factoring. With

each of these manipulations certain kinds of expansion and simplification

are automatic, and others are under user control. Results can be

displayed in readable form following any such operation.

Most computer problems at BRL are written in the FORTRAN language,

and SYMAP2 consists of more than 120 FORTRAN subprograms interlinked

appropriately to achieve the aims of the variety of manipulations

mentioned above. Several versions of SYMAP2 exist, all functioning on

the ERLESC 2 computer. One version in "standard" FORTRAN could be

implemented elsewhere with at most minor changes. Other versions

provide some additional flexibility by using certain special features

of local computers and local FORTRAN conventions and subroutines.

Where pertinent in this report these versions will be distinguished.

The zvctfucrfion o<J inte.gicLlt> hai bzen ijnplejmnte.d, but ix> linUttd to
contain vcAt/ commonly occwuiing cla&^u oi lnte.gM.nd6, a& diAcu&Aed
lateA.

11

III. INPUT TO THE SYMAP2 MANIPULATOR

As with most FORTRAN programs some "data" must be supplied to the

SYMAP 2 manipulator. This input consists of several distinct parts

introduced sequentially:

(1) Standard input common to all users.

(2) Mode specification and list of user primitives.

(3) List of user special functions (at least one).

(h) List of user manipulations and special controls.

The present implementation of SYMAP2 at BRL is as a "batch"

problem, not remote and not interactive; so the input is prepared in

advance and submitted on punched cards.

A. Part (l) Input

The part (l) input is provided to the user and merely submitted

first. It supplies certain standard symbols and symbol strings used

internally and is read in rather than prestored to provide flexibility

in case of implementation on dissimilar computers. In particular, the

special primitive names PI (=TT), EBASE (=e), and INFIN (=°°) are supplied

here, not in part (2). This part terminates with a "sentinel card"

consisting of commas in card columns 1 and 2 only.

B. Part (2) Input

Input for part (2) is of two types, one card for certain user

options and additional cards for specifying user primitives. The

options include: (a) exact (rational) or approximate (decimal)

arithmetic, (b) stopping if an indeterminate form is encountered

(O/O, O.00, °°/m, 0°, co° or 1™) > or replacing it by a new primitive and

continuing, and (c) specifying a control on certain automatic

expansions.

If all numerical coefficients are integers, specifying either

EXACT or APPROX at column 1 will suffice. Otherwise if rational

numbers are wanted, EXACT should be used. If decimal values are

wanted, APPROX is needed. There are limitations of about 7 digits on

numerator, denominator, and decimal approximation in the BRLESC 2

12

implementation. Rounding errors can occur but have not been serious to

date.

Rational numbers are expressed in the form (x,y) where x and y are

integers. Thus 1/3 is denoted (1,3) and - 25/231 is (-25, 231).

Results in the EXACT mode are reduced to lowest terms automatically, so

that (5,8) + (7,8) = (3,2). If the APPROX mode is specified, then any

rationals such as (1,3) introduced by the user are automatically

converted to decimal values like .3333333 with some error in the last

digit. Similarly a decimal number like .3333333 in the EXACT mode

becomes (3333333, IOOOOOOO) and not (1,3)> so the user should exercise

caution in this regard.

For control of indeterminate forms use BYPASS at column 11 if

indeterminates are to be allowed in the form of new primitives. Leave

columns 11-20 blank if the detection of any indeterminate is to be

announced but operation is to cease then.

For control of automatic expansion, specify a small non-negative

integer M in columns 21-22. Then expressions such as (A + B) will be

expanded only if J is an integer such that 0 <. J <, M and left unexpanded

otherwise. Expansion in full is automatic if M=0 (or blank). The user

may revise his choice of options if necessary later, in part (k). A

.summary is shown in Figure 1.

The remainder of part (2) of the input is a list, one per card at

column 1, of the primitives the user includes in his algebraic forms.

Not more than kO are allowed at present. Their sequence in the list

determines a sorting (collating) sequence used in simplifying results;

so if a result is to have its terms grouped in like powers of X, for

example, then X should be specified before any other primitives which

are expected to appear.

Primitives may have names of 1 to 6 letters or digits, the first

a letter, and if the first is F or I the second must not be a digit.

Thus X, Y, XI, LAMBM, FF, G, J3, FA2 (but not F2A or II) are allowed.

Input to part (2) ends with a sentinel card as above.

13

Card Columns 1-10 Arithmetic mode

EXACTbbbbb Rational arithmetic of numbers

APPROXbbbb Decimal approximations

Card Columns 11-20 Indeterminates

bbbbbbbbbb Halt on noting indeterminate

BiPASSbbbb Replace indeterminate by new
primitive

Card Columns 21-50 Expansion control

bbbbbbbbbb Expand wherever possible

integer M Expand only if exponent ^ M

Note: The symbol b indicates a blank character.

Figure 1. Summary of Options, Part (2) Input

C. Part (3) Input

The part (5) input is a similar list of user special functions (at

least one and not more than 30) followed by a sentinel card. Function

names are restricted in the same manner as primitive names and must not

duplicate any primitive name, of course. The number of arguments of a

function is not specified here, only the name. (As above, position on

this input list affects the sorting sequence of functions, but in

general all functions follow the last primitive; so this is rarely

important to the user.)

D. Part (k) Input

Input for part (k) is the sequence of user-specified manipulations

and controls (explained in the next section) followed by a sentinel

card as above. In general there is no further input after part {k),

and the manipulations are curried out in sequence when this final

sentinel is recognized. Provision to restart at part (2), or at part

(h), can be arranged if needed.

Ik

IV. SPECIFYING MANIPULATIONS

Manipulations allowed with SYMAP2 are of three kinds: basic,

composite, and control. Basic manipulations are allowed in all

implementations. Composite and control types require special features

available at BRL but not necessarily elsewhere (such as the PACK,

UNPACK, ENCODE, and DECODE operations on character strings which are

not standard FORTRAN).

A. Basic Manipulations

Basic manipulations are specified in a manner similar to some

"three-address-code assembly languages". In general the result of any

manipulation remains available for later use; so it is given a name.

Names of most results at present are denoted by the letter F followed

by an arbitrary positive integer assigned by the user. (Exceptions

will be explained later). Thus in F21 = X + Y the result is called

F21. The two operands are the (previously declared) primitives X and Y,

and the operation is (symbolic) addition. Thus F21 here represents the

sum x + y, and later operations on F21 would be operations on x + y.

Operands can be primitives, positive numbers, or the results of

previous operations. The second operand may be an explicitly negative

number, but not the first. (However, unary operations with - permit

the introduction of negatives in general.) The following examples

introduce several basic manipulation types. The brief comments often

shown at the right in examples are of course not punched on actual

input cards.

Fl = 1.3 + X addition

F2 = 6 - Y subtraction

F3 = 3 * x multiplication

PU = Y / k division

F5 = X ** -2 exponentiation

F6 = SIN (Fl) function of one argument

FT = - F3 change of sign (unary)

F8 = F7 * Fl operation on 2 previous results

15

F9 = GFCN (F2, FT, -8) function of 3 arguments
(see part (3) input)

F10 = Fi+ ** F5 higher level exponentiation

Fll = F2 copy (unary)

F12 = -3.II+16 form a negative number

With SYMAP2, unlike conventional FORTRAN, the decimal point is not

needed ("but is permitted) with integers such as those shown in F2, F3,

Fh, and F9 above.

In most of the above examples no simplification is required, but

it would be automatic in the case of F8 where F7 * Fl would mean

(-3x) * (1.3 + x) and would become the^equivalent of -3.9x -p3x . „

Similarly in F10 the quantity (.25y) would become (.25) * y

automatically in accordance with the rules of the L-System as adopted

and implemented.

Additional basic manipulations include the following as examples,

discussed briefly below:

F21 = SUM (1, h, X, F3)

F22 = PROD (2, k, Y, F2)

F23 = DERIV (X, F6)

F21+ = IINTEG (X, F6)

F25 = DINTEG (F2, F3, T, F5)

F26 = SUBST (F6, X, FU)

F2T = COEFF (X, F8)

F28 = VALUE (F21)

F29 = VALUE (F22)

F30 = VALUE (F23)

F31 = RECONV (F9)

Here F21 is the algebraic form equivalent to the indicated sum

over an integer index set, namely E (3*x). The sum is not
x=l _

automatically expanded as this is often undesirable. However, F2Ö is

the value of this summation, i.e., the expanded form with any

"standard" simplifications carried out. Thus, F28 is 3*1 + 3*2 + 3*3

+ J>*h which simplifies to 30. Similarly, F22 is the indicated product

16

k
II (6-y), not expanded. However, F29 is the expanded and simplified

result, not necessarily a number in general, but in this case found to

be (6-2) * (6-3) * (6-M = k * 3 * 2 = 2k. Double and triple sums and

products are also allowed.

F23 is the indicated derivative with respect to x of the form F6.

Its value is F30, namely the value of — [sin (1.3 + x)] or

cos (1.3 + x). In some versions of SYMAP2 the DERIV operator includes

the VALUE operation as a convenience to the user.

Much more complicated derivatives can be found, some of which are

discussed later in this report.

F2U and F25 are indicated indefinite and definite integrals

respectively. Certain kinds of symbolic integrals can be evaluated;

others are merely indicated at present. There are no plans currently

to attack the general symbolic integration problem, however. Here F2U

is the equivalent of f sin (1.3 + x) dx and F25 represents J x dt.
6-y

Indicated double and triple integrals are also provided for. Examples

are included later in this report.

F26 is the result of an actual substitution in which the primitive

X is replaced by Fk, that is .25y, wherever X occurs in F6. WOW F6

represents sin (1.3 + x); so F26 represents sin (1.3 + -25y). Examples

of more complicated substitutions are given later in this report.

F27 is the coefficient of the first power of x in the form F8,

namely -3-9- The coefficient in some other case might have been non-

numeric, such as a function of y, etc. Finding such coefficients is

one type of factoring.

F31 is a display (readable print-out) of the form F9, generated

earlier. Displays cannot be manipulated further and indeed are not

saved; so any operation on F31 would fail. F9 remains available,

however, and can be manipulated further.

Other basic manipulations can be used to set up and solve small

systems of linear algebraic equations with non-constant coefficients.

(Constant coefficients are permitted, but more efficient methods are

17

available for such cases, using standard FORTRAN subroutines.)

Manipulations of type FSYST, SOLVEQ, and ELEM are needed in conjunction

with types introduced earlier. As an example:

Fh$ = FSYST (PUI, F32, F39)

Assuming that FUl, F32, and F39 are 3 linear expressions in 3 unknowns,

this step forms an ordered system of 3 equations (each assumed equal

to 0).

FU6 = FSYST (X, Y, Z)

This step forms a similar system of the 3 unknowns in the order

specified.

FU7 = SOLVEQ (FU5, FU6, 3)

This solves the 3 equations specified at F^5 for the 3 unknowns

specified at FU6 and forms an ordered array of the solutions at FVf.

FkQ = ELEM (FVf, 1)

Fk9 = ELEM (FVf, 2)

F50 = ELEM (FU7, 3)

These steps isolate the first, second, and third elements of the array

FU7 for any further operations, such as display.

F51 = RECONV (FU9)

This displays in readable form the item specified, in this case

the second element of the solution, that is, the value of the variable

Y in terms of the parameters other than X and Z which occur in the

original system FU5-

Incidentally, the "unknowns" in such systems need not be primitives

so long as the equations are linear in them. For instance FUl might be
2 2 1/2 v v

x + 2y + z + a . sin (w ') + cp - h and the unknowns could be p ,
1/2 2

sin (w), and x . The solutions would involve y, z, a, c, and any

parameters introduced via the other equations.

Similar commands could be used (in principle) for systems of 1,2,

3,U or more elements. A limit of at most 3 elements is imposed at

present on BRLESC 2.

Additional information on several of these and a few additional

SYMAP2 commands is found in the examples given later in this report.

18

A brief summary is shown in Figure 2(a) and (b) below:

Arithmetic

El + E2 El * E2

El - E2 El / E2

-El El ** E2

Simple Functions

LOGE (El) ARCSIN (E2)

L0G10 (El) ARCCOS (E2)

SIN (E2) ARCTAN (E2)

COS (E2) ARCCOT (E2)

TAN (E2) SINH (E2)

COT (E2) COSH (E2)

SEC (E2) TANH (E2)

CSC (E2)

Here Ei is a primitive, a positive constant, or the label F. of a
u

previous result. E2 but not El can be an explicitly negative constant

also. El cannot be a constant, i, j, and k are positive integers, and

p is a primitive. See also Figure 2(b).

Figure 2(a). Summary of Principal Basic Manipulation Types

B. Composite Manipulations

Composite manipulations allow for the equivalent of several basic

manipulations in one user specification. Thus algebraic formulas much

like the "arithmetic expressions" of FORTRAN are permitted:

F55 = (Y**2 - X**(Y-l)) * (SIN (F3 + Y * LOGE (X**(Y-l))))**2

Use of such a formula may make specification simpler for users familiar

with FORTRAN expressions. The SYMAP2 program analyzes such expressions,

breaks them up into equivalent basic manipulations and in due course

carries out those basic manipulations. Advantages are that fewer cards

are needed, and meaningful formulas are kept intact by the user.

Disadvantages are that the manipulator program is enlarged and is

slowed down by the time needed to analyze complicated expressions, and

further that some basic manipulations may be done more often than

19

Special Functions

RECONV (F.)
J

VALUE (F.)
J

GOEFF (El, F.)
3

FSYST (El, El', . .., El")

SOLVEQ (F., F ', i)

ELEM (F., i)

SUBST (F., El, E2)

DERIV (p, F.)

inMEG (p, F.)
J

IINTEG (p, p', F.)
J

IINTEG (p, p', p", F.)

DINTEG (E2, E2', p, F.)

DINTEG (E2, E2', p, E2", E2'", p', Fj)

DIOTTEG (E2, E2', p, E2", E2'", p', E2"", E2",//, p", F.)

SUM (i, k, p, F)
J

SUM (i, k, p, i', k', p', F)
J

SUM (i, k, p, i', k', p', i", k", p", F)

PROD (i, k, p, F.)
J

FROD (i, k, p, i', k', p', F)
J

FROD (i, k, p, i , k , p , i , k , p , Fj)

SEQ (E2, E2', ..., E2")

IMDIFF (p, F., p', F. ')

IMDIFF (p, F., p', F.', p", F.")

IMDIFF (p, Fj, p , F , p , F , p , F)

PIMDIF (i, i', F., F.', F.", F.'")
J J J J

GHGVAR (i, i', i", F., F.', F.", F.'", F."")

Figure 2(b). Summary of Principal Basic Manipulation Types

20

necessary. In F55 for example X**(Y-l) appears twice and would be

generated twice. However, the user could generate it once, as F^k say,

and refer to F^>k twice in specifying F55.

Certain special basic manipulations such as ELEM, VALUE, RECONV,

COEFF, etc. are not permitted in composite manipulations per se but can

be done separately and the results referred to by label. A length

limitation to card columns 1 - JO is also imposed on both basic and

composite manipulations at present.

C. Control Manipulations

Control specifications allow certain kinds of counting, decisions

based on counts, and jumps. Some use of indexed arrays is also

permitted. Jumps are to numbered manipulations only. At present up to

100 different cards may have unique one or two digit numbers in columns

79 - 80. The unconditional jump, say to the manipulation numbered U0,

is as follows:

GO TO kO

where the GO starts at card column 1. This causes the manipulation

numbered U0 to be done next, then the one after 1+0, etc. until some

other control specification changes the sequence again.

Other jumps depend on the integer contents of certain pseudo-

index registers called II, 12, ..., 120. At present there are

precisely 20 of these. Their existence rules out primitives and

functions having names starting with the letter I followed by a digit,

as stated earlier. Each index register I can contain one integer,
n '

positive, negative, or zero. Loading an index register, say 13, with

an integer, say 2, is done with the following control specification,

starting at card column 1:

INDEX 13-2

The integers in index registers may be changed by adding, subtracting,

multiplying, or dividing by constants or by the contents of other

index registers. (The integer result of division is "rounded down"

21

the same as in FORTRAN). Thus

INDEX 12 = 12 + 1

INDEX 12 = 13 - 5

INDEX IU = 3 * II

INDEX I^ = II * 5

INDEX 15 = 13 / k

INDEX 13 = II - 12

and similar integer operations using two operands are allowed.

The only conditional jump allowed at present is similar to the

"Jump if +" operation in some computer codes. In SYMAP2 it takes the

form

IF (I , m)
n

where I is any index register and m represents any numbered manipulation.

Thus

IF (13, 25)

tests the integer contents of 13 and if zero or greater causes a jump

to the manipulation numbered 25.

Use of the above GO TO, INDEX, and IF types of control specifications

permits many of the logical and looping capabilities of numeric

processors. These are operational on the BRLESC 2 computer. Other

types may be added to the SYMAP2 manipulator in the future.

It should be noted that the manipulations

INDEX 15 = 1

and

F3 = 1

are not equivalent. The first puts the integer 1 into a single cell

called 15 which can be used as just described. The second puts

several characters, equivalent to unity in the L-notation, into a

string called F3- Conversion between the two notations is permitted,

however, by additional index operations. Thus:

INDEX FT = IU

causes the integer at Ik to be transformed into L-notation and stored

:>z

in string F7 (with Ik not changed), and

INDEX 13 = F2

causes the L-integer in string F2 to be converted to a true integer and

stored in index 13 (with F2 unchanged). The latter requires that F2

actually be an integer in L-notation, not some other algebraic form, or

an error occurs.

When SYMAP2 control specifications are available (as on BRLESC 2),

certain indexed arrays of results are also permitted. Names of up to 9

characters such as Fl(2), F2(3,5), F3(I2), F4(ll,5), F6(l2,I3), F7(2,3,M

are allowed both as results and as arguments for later manipulations.

Only indexes II through 19 are permitted in arrays at present. Note

that a name like F35(11,13) exceeds the 9 character limitation, as does

Fl(ll,I2,I3)• Actually, names with references to index registers I

are adjusted internally, with the name I being replaced by the contents

of I . Thus, if II contains 100, then the name F^0(ll,2), which has

9 characters, is changed to F^O(100,2), which has 10 characters and is

illegal. The contents of II must be kept small to avoid this. In

practice, however, SYMAP2 arrays must be kept small for other reasons;

so this naming restriction is not serious.

Result names F. and of course I can be reused if desired. In
l n

such cases previous results with exactly the same name are no longer

available.

V. EXPOSITORY EXAMPIES

The principal manipulations of basic, composite, and control types

have now been introduced. Examples follow to show additional features

of some of these and to indicate how they can be applied in practice.

Some comments on generality are included with each and also in Section

VI.

23

A. Indexed Arrays and Controls

Given two 3x2 matrices A and B, find C = A + B.

Assume that the elements of A have been found and are the symbol

strings with names Fl(l,l), Fl(l,2), Fl(2,l), Fl(2,2), Fl(3,l), ^d

Fl(3,2) and that those of B are in a similar array F2(i,j). Let us

find the elements of C and store them in an array F3(i,j).

For this specific case 6 steps are sufficient:

F3(l,l) = Fl(l,l) + F2(l,l)

F3(l,2) = Fl(l,2) + F2(l,2)

F3(2,l) = Fl(2,l) + F2(2,l)

F3(2,2) = Fl(2,2) + F2(2,2)

F3(3,l) = Fl(3,l) + F2(3,l)

F3(5,2) = Fl(3,2) + F2(3,2)

Six more steps of type RECONV are needed if the results are to be

displayed. (See Figures 3 and k).

If, however, the number of rows or columns were much larger, say

6x8, or perhaps changing for different applications, use of indexes

and loops might avoid duplicate human effort.

INDEX 15 = 6

INDEX 16 = 8

INDEX II = 1

INDEX 12 = 1 10

F3(I1,I2) = Fl(ll,I2) + F2(ll,I2) 20

F100 = RECONV (F3(ll,I2))

INDEX 12 =12 +1

INDEX 13 = 16 - 12

IF (13,20)

no. of rows

no. of columns

first row

first column

one element

display

last column?

INDEX II = II + 1

INDEX IU = 15 - II

IF (IU,10)

INDEX II = 1

last row?

dummy operation

(or next step, if any)

2h

APPROX

X

Y

> >

G

options

primitive(G)

function(s)

Fl (l ,1)

F2 (l ,1)

Fl (1 ,2)

F2 (1 ,2)

Fl (2 ,1)

F2 'o ,1)

Fl '2 ,2)

F2 '2,

Fl('3, 1)

F2(3, 1)

Fl(3; 2)

F2('5, 2)

F3(1, l)

F3(1; 2)

FJ(2, l)

F3(2, 2)

F3 !5. 1)

F3('3. 2)

= Y*SIN(X) + Y ** - 3

= SIN(X) * 3*Y-Y ** 2.5

= X * SIN(X) ** 2

= X * COS(X) ** 2

= (5,6) * G (Y)

- (1,5) * G (Y)

= .U * Y ** 3

= (Y * -.2) ** 3

= (X + Y) ** 3

= (X - Y) ** 3

= X - Y

= Y - X

F100 =

F200 =

F300 =

FUOO =

F500 =

FoOO =

= Fl(l

- Fl(l

= Fl(2

= Fl(2

= Fl(3

= Fl(3

RECONV

RECONV

RECONV

RECONV

RECONV

RECONV

1) + F2

2) + F2

1) + F2

2) + F2

1) + F2

2) + F2

F3(l,l)

F5(l,2)

F3(2,l)

F3(2,2)

F3(5,l)

F3(3,2)

1,1)

1,2)

2,D
2,2)

3,D
3,2)

all

bll

al2

bl2

a32

b32

ell

cl2

c21

c22

c31

c52

display(s)

Figure 5- Input, Parts (2), (3), (h), for Array Example

25

FlOO

1+*Y*(SIN(X))+(-l)*Y**2.5+Y** (-5)

F200

X*(SIN(X))**2+X*(C0S(X))**2

F300

1.166667*(G(Y))

F^OO

.392*Y**3

F500

6*X*Y**2+2*X**3

F600

0

Figure l+. Principal Output, Array Example

Note that in the second example an inner loop starting at step 20

is traversed for each element of any given row and an outer loop start-

ing at step 10 allows consideration of each row in turn. The results of

step 20 are stored with names F3(l,l), F3(l,2), . .., F3(l,8), F3(2,l),

..., F3(6,8). Thus there is no conflict in the reuse of the "label"

F3(ll,I2), and all A's, B's and C's remain available for further use.

B. Product over an Index Set

5 .2 Let us use SYMA.P2 to generate II (i + j) and then evaluate it.
i=l

2
The operand i + j can be built up in two basic steps.

Fl = I**2 i2

F2 = Fl + J i2 + j

where I, J are previously specified primitives.

Now indicate the product for i running from 1 through 3-

F3 = PROD (1, 3, I, F2)

This single product requires one triplet 1, 3, I indicating the lower

limitj the upper limit, and the running index, followed by a final

26

Input:

EXACT

I

J

.'.'

G

))

Fl = j-x-x-2

F2 = Fl + J

F3 = PROD (: I, 3, I, F2)

FU = VALUE (F3)

F5 = RECONV (FU)

Principal Output:

F5

U9*J+l4*j**2+j**3+36

Figure 5- Product over a Single Index Set

parameter specifying the operand of the product. The indicated product

is called F3.

F4 = VALUE (F3)

In this context VALUE substitutes successively i = 1, i = 2, and i = 3
.2

in i + j and multiplies the results to get the equivalent of

(l2 + j) * (22 + j) * (32 + j) or (1 + j) * (h + j) * (9 + j) which
2 3

automatically expands to 36 + U9j + Ihj + j at FU.

F5 = RECONV (F4)

This displays the final results in readable form. (See Figure 5«)

Double and triple products can be handled similarly, within limits

imposed by computer memory allocations.

27

The general single product, double product, and triple product,

such ac ul u2 ul u3 u2 ul
n f or n n f or n n n f

xl=il x2=i2 xl=£l xj=i3 x2=i2 xl=il

are specified respectively by

PROD (LI, Ul, XI, F)

PROD (L2, U2, X2, LI, Ul, XI, F)

PROD (L3, U3, X3, L2, U2, X2, LI, Ul, XI, F)

where

F is the operand, usually dependent on XI, X2, X3

LI, L2, L3 are the lower limits

Ul, U2, U3 are the upper limits

XI, X2, X3 are the running indices (bound primitives)

Ul-Ll, U2-L2, U3-L3 are integers 2 0

If such a product is to be evaluated using the VALUE operator, the

limits must normally be explicit integers. However, special cases such

as £1 - P., where n is a primitive, and ul - n + 5 are also allowed.

The operand F may not contain indexed arrays such as Fl(Xl,X2) at

present.

C• Sum over a Double Index Set

Let us use SYMAP2 to generate J y (i + j) and

then evaluate it. i=l j=2

The double summation can be specified in one step, once the

summand has been built up. We assume that I and J have been previously

specified as primitives.

Fl = I**2 i2

2
F2 = Fl + J i + j

2
The summand i + j is thus called F2 here.

F3 = SUM(1, 3, I, 2, 3, J, F2)

The double summation in the L-system requires seven parameters, namely

two triplets for the two index sets and one summand. The first triplet

1, 3, I specifies lower limit, upper limit, and name of index for the

28

last (outermost) summation. The second triplet 2,3, J is similar for

the next (here, innermost) summation. The summand is specified as the

last parameter. At this point F3 is the indicated double sum in L-

notation.

Fk = VALUE (F3)

In this context VALUE causes the successive substitution of j = 2 and
2 2

then j = 3 in the summand and sums the results to obtain i +2 + i +3
2 2

or 2i +5- It then uses 2i + 5 as the new summand (still symbolic,

note) and successively substitutes i = 1, i = 2, i=3 and sums to get

2(l)2+5 + 2(2)2+5 + 2(3)2+5 or 7 + 13 + 23 or 1+3. Thus the result Fk

is the L-form equivalent to the number Kj.

F5 = RECONV (Fk)

This displays the readable result k3- (See Figure 6.)

Naturally, if the summand had contained other variables or functions

the result would have been non-numeric. Some simplification would take

place but the result might not be in the "simplest" form for the user.

Additional substitutions might then be applied through other

manipulations, if desired.

Triple sums and of course single sums can be specified in a

similar way.

The general single, double, and triple sums such as

ul u2 ul u3 u2 ul

E,orSS' " E ESf
x

l=il x2=i2 xl=il x3=i3 x2=i2 xl=il

are specified respectively by

SUM (LI, Ul, XI, F)

SUM (L2, U2, X2, LI, Ul, XI, F)

SUM (L3, U3, X3, L2, U2, X2, LI, Ul, XI, F)

with the same restrictions specified earlier for products over index

sets. In particular note that Ul-Ll, U2-L2, U3-L5 must be integers

> 0.

oQ

Input:

APER OX

I

J

FCN

> >

Fl = I ** 2

F2 = Fl + J

F5 = SUM (1,5,1, 2,5,J, F2)

Fk = VALUE (F5)

F5 = KECONV (Fl+)

> ,

Principal Output:

F5

Figure 6. Sum over a Double Index Set

D. Substitution in Manipulating Trigonometric Identities

Given that

sin (A + B) = sin A * cos B + sin B * cos A

and that

cos (A + B) = cos A * cos B - sin A * sin B

let us derive formulas for sin 5A and for cos 5A in terms of sin A

and cos A.

Assuming that composite manipulations are available (otherwise

taking a few more, but equivalent, steps) we can write:

Fl = SIN (A) * COS (B) + SIN (B) * COS (A)

50

which is equivalent to sin (A + B), and similarly:

F2 = COS (A) * COS (B) - SIN (A) * SIN (B)

which is equivalent to cos (A + B). We note that if B were set equal

to A in Fl and F2, we would get the equivalent of sin (A + A) or sin 2A

and of cos (A + A) or cos 2A. Similarly for B = 2A we would get the

equivalent of sin 3A and of cos 3A in terms of functions of A and 2A.

Fll = SUBST (Fl, B, A)

F12 = SUBST (F2, B, A)

F13 = 2 * A

Flk = SIN (F13)

F15 = COS (F13)

We now have explicitly sin 2A at Fl^ and cos 2A at F15 as well as their

equivalent expressions in terms of A at Fll and F12.

F21 = SUBST (Fl, B, F13)

F22 = SUBST (F2, B, F13)

Now F21 is equivalent to sin 3A and F22 is equivalent to cos 3A, both

in terms of A and 2A. Let us remove the dependence on 2A by use of

Fll through F15.

F23 = SUBST (F21, Flk, Fll)

This eliminates sin 2A in the expression for sin 3A.

F21+ = SUBST (F23, F15, F12)

This eliminates cos 2A from the result of the preceding step.

Similarly,

F25 = SUBST (F22, FlU, Fll)

F26 = SUBST (F25, F15, F12)

Now the formula wanted for sin 3A is at F2U and that for cos 3A is at

F26. These can be displayed with two more steps:

F100 = RECONV (F2k)

F200 = RECONV (F26)

These results involve sin A and cos A to various powers. If some other
2 2

combination is preferred, then replacing sin A by 1 - cos A or
2 2

cos A by 1 - sin A etc. in F2i+ and F26 (or perhaps in F12 before

continuing as shown) might give the form wanted. In general it is not

31

APPRCK

A

B

FCN

Fl = SIN (A) * COS (B) + SIN (B) * COS (A)

F2 = COS (A) * COS (B) - SIN (A) * SIN (B)

Fll = SUBST (Fl, B, A)

F12 = SUBST (F2, B, A)

F13 = 2 * A

¥lh = SIN (P13)

F15 = COS (F13)

FlOO = RECONV (Fll)

F200 = RECONV (F12)

F300 = RECONV (FlU)

FtoO = RECONV (F15)

F21 = SUBST (Fl, B, F13)

F22 = SUBST (F2, B, F13)

F500 = RECONV (F21)

F600 = RECONV (F22)

F23 = SUBST (F21, Fl^, Fll)

F2i; = SUBST (F23, F15, F12)

F700 = RECONV (F2U)

F25 = SUBST (F22, FlU, Fll)

F26 = SUBST (F25, F15, F12)

F800 = RECONV (F26)

Figure 7. Input for Substitution Example

32

FlOO

2*(SIN(A))*(C0S(A))

F200

(-l)*((SIN(A))**2)+((COS(A))**2

F300

(SIN(2*A))

FUOO

(C0S(2*A))

F500

(SIN(A))*(C0S(2*A))+(SIN(2*A))*(COS(A))

F600

(-1)*(SIN(A))*(SIN(2*A))+(COS(A))*(C0S(2*A))

FTOO

3*(SIN(A))*((COS(A))**2)+(-l)*((SIN(A))**3)

F8OO

(-3)*((SIW(A))**2)*(C0S(A))+((COS(A))**3)

Figure 8. Principal Output, Substitution Example

obvious in advance just which substitutions of this kind are useful.

Hence they can not be fully automatic. However, the user can try-

several versions of his "program" one after the other, and select the

form of result he prefers.

Figures 7 and 8 show the input and output for an equivalent set of

steps with a few additional results displayed.

Substitution in SYMAP2 is by no means limited to trigonometric

expressions. Indeed, primitives, powers, products, and sums can be
2 k

replaced in most contexts. In particular, a product like a . x
2 3 h

can be replaced in a context like log (3 • a . b . x . y) where the

factors are not even adjacent. Many symbol manipulators do not have

this capability.

33

E. Indefinite and Definite Integration

Let us find the indefinite integral with respect to y and then x

of a sum of terms involving powers of y and x, namely:

//
h -12

(2 x y + x y sin (t)) dy dx

Then let us find the following definite integral as well:

cos(y) dy dx r /; -
The two SYMAP2 procedures are analogous. In each case the integrand is

set up, and then a single additional step is sufficient to specify a

single, double, or even triple integral. If the limits of integration

are complicated, they probably should be formed separately for

convenience. Finally the results can be displayed in readable form.

F1=2*X**U*Y+X**-1*Y**2* SIN(T) integrand 1

F2 = IINTEG (X, Y, Fl) integral 1

F5 = RECONV (F2) display 1

Note that the parameters of the IINTEG operator are, from right to

left, the integrand, the first (or only) variable of integration, and

any other variables of integration in order. A single constant of

integration is generated automatically as each indefinite integration

is completed. If the integration can only be indicated, the constant

of integration is omitted.

The case of definite integration is similar, except that the

limits must be specified.

F10 = T ** 2 a limit

Fll = A ** X * COS (Y) integrand 2

F12 = DINTEG (A,H,X,F10,X,Y, Fll) integral 2

F13 = RECONV (F12) display 2

Note that the parameters for DINTEG consist of a triplet for each level

of integration plus the integrand at the right. Each triplet has the

lower limit at the left, the upper limit second, and the variable of

integration at the right. In this example the first integration is
o

with variable y, lower limit F10 (or t), and upper limit x. The

second integration is with variable x, lower limit a, and upper limit h.

3U

e

C

C . x~

C1 • x C2 C2 ^

C1 . eX

c2 +
C, . sin (x)

C, . cos (x)

C • sinn (x)

C • cosh (x)

C . loge (x)

 1 a = positive term
2

a + x

1 a = positive term

Also any linear combination of the above (e.g., polynomials in x).

Note: C,, C^, a must not involve x, but need not be constants. All

other integrations are merely indicated at present. This list may be

extended for other particular cases.

Figure 9- Integrands Allowing Complete Integration in x.

F3

X*CNST1

+(l,5)*(X**5)*(Y**2)

+(I,3)*(Y**3)*(LOGE(X))*(SIN(T))

+CNST2

F15

(A**(A))*((LCGE(A))**(-1))*(SIN(T**2))

+(-l)*(A**(H))*((L0GEE(A))**(-l))*(SIN(T»*2))

+DINTEG(A,H,X,((A**(X))*(SIN(X))))

Figure 10. Principal Output, Integration Examples

35

(in general the limits can be quite complex, but only a limited class

of integrands can be integrated completely using SYMAP2; see Figure 9.)

In this example after one definite integration the integrand
x x P

becomes a sin (x) - a sin (t), a sum of terms. The first term

cannot be integrated further by SYMAP2; so its second integration is

merely indicated. The second term can be handled however, and its

second integration is carried out. The result is shown in Figure 10.

As with most SYMAP2 operations the results, F2 and F12 here, can

be used in further manipulations.

F. Symbolic Differentiation

Let us find the derivative of the algebraic form
•z

/ x I cos ty dt
h

a

with respect to x and y and z separately. First we must generate this

form unless we already have it from earlier steps:

Fl = T * Y ty

F2 = COS (Fl) cos ty

F3 = DIMEG (H, Z, T, F2) integral

FU = X * F3 exponent

F5 = A ** Fk differand

We then differentiate the form F5 with respect to x in two steps:

Fll = DERIV (X, F5)

F12 = VALUE (Fll)

Here Fll is the indicated derivative, not yet evaluated, and F12 is the

result of evaluation, namely the L-form equivalent to

•z f
x I cos ty dt

(a ,/n) (J h cos ty dt) (loge a).

To display this in readable form we use a KECONV step:

F20 = KECONV (F12)

(See Figure 11 and 12.)

36

A

X

y

z
H

T

} ,'

GFCN

,','

Fl = T * Y

F2 = COS (Fl)

F3 = DINTEG (H, Z, T, F2)

FU = X * F3

F5 = A ** FU

F10 = RECONV (F5)

Fll = DERIV (X, P5)

F12 = VALUE (Fll)

F20 = RECONV (F12)

Figure 11. Input for Differentiation Example

F10

A**(X*(DIWTEG-(H,Z,T,COS(Y*T))))

F20

(A*»(X*(DMEEG(H,Z,T,COS(Y*T)))))

(LOGE(A))(DINrPEG(H,Z,T,COS(Y*T)))

Figure 12. Principal Output, Differentiation Example

37

In like manner we can differentiate F5 with respect to y:

F21 = DERIV (Y, P5)

F22 = VALUE (F2l)

F30 = RECONV (F22)

Here we would get a FORTRAN-like expression readily interpreted as

■z

x| cos ty dt
■/; i (a J) (x\h (- t sin ty) dt) (log^)

The exact order of elements would depend heavily on the collating

sequence used.

Three similar steps would get the derivative with respect to z as

rz
x I cos ty dt
J h

(a) (x cos zy) (log a). ^e

Incidentally, the L-forms F12, F22, and the like can be differentiated

further to obtain second- and higher-order derivatives if desired. Also

numeric values can be substituted for some or all variables to obtain

derivatives at specific points.
7

Many outside symbol manipulators such as ALTRAN are designed to

process polynomials or rational expressions only. An example like this

one involving trigonometric functions and integrals could thus not be

done with such manipulators.

G. Differentiation of a Function Defined Implicitly

Suppose that u is defined implicitly in terms of an independent

variable x and two other variables v and w, which also depend on x,

as follows:
5 3 2

log (x) + u^ + v . w =0
2

F(x,u,v,w) = x + u

where, say:

v = sin (x)

w = x + tan (x)

u = g (x)

38

Let us find the derivative of u with respect to x, that is g(x),

in terms of x, u, v, and w.

The SYMAP2 operator IMDIFF (implicit differentiation) is used to

this end. Several preliminary steps are required, however:

Fl = X **2 + U * LOGE(X) + U **5 + V **3 * W **2 F

F2 = G(X) u

F3 = SIN (X) v

Fk = X + TAN (X) w

F5 = IMDIFF (X, Fl, U, F2, V, F3, W, Fk)

F6 = RECONV (F5)

The parameters of IMDIFF are, from left to right:

(1) The independent variable of differentiation, here x.

(2) The formula defining the dependent variable implicitly, here F.

(3) The dependent variable, here u.

(k) The general function (of x) representing the dependent variable,

here g(x).

(5) One of the intermediate variables, if any, here v.

(6) The explicit definition of v in terms of x.

(7) Another intermediate variable, if any, here w.

(8) The explicit definition of w in terms of x.

Of course X, U, V, and W must be primitives (so declared in

part (2) of the SYMA.P2 input), and G must be a user specified function

(as declared in part (3) of the input.)

The result of IMDIFF, stored with label F5 and displayed via the

RECONV operator, is not the desired derivative -=— g(x) but is the

total derivative of the expression F, which is equivalent to

(=0)

since F is a function of x, u, v, and w in this example and u, v, and

w are all functions of x.

9F + OF
dx du

. du öF
dx dv

dv dF
dx dw

dw
dx

39

du dg(x)
dx dx

dv
dx "

= cos (x)

In this example

r— = 2.x + u.x
dx

^=loge(x) +5.u

dF , 2 2
— = 3- v . w
dv

dF 0 3 dw . L i- , v-,-2
— = 2.v .w — = 1 + [cos(x)j
dv dx v '

Thus F5 represents

(2x + u . x"1) + (log (x) + 5.u) . dg(x) + 3.v2.w2. cos(x)
e dx

+ 2.v3.w. (1+ [cos (x)]"2) (=0)

which is a linear equation defining dg(x) implicitly. It can be
dx

solved using the SOLVEQ operator as follows:

FT = DERIV (X, F2) dg(x)

F8 = SOLVEQ (F5, F7, l)

F9 = RECONV (F8)

The SOLVEQ parameter 1 indicates just one equation; so F5 and F7 serve

as one-dimensional arrays without any need of the FSYST operator.

F8 represents the solution (a single element) and can be displayed

directly without prior use of the ELEM operator. In this example the

solution is the equivalent of

(2.x + u.x + g.v .w . cos(x) + 2.v .w + 2.v ,y . [cos(x)])

(log (x) + 5 • uU)
e

fully expanded as five terms, each containing the inverse of the

denominator as a factor. This is the derivative wanted.

At present IMDIFF is limited to 0, 1, or at most 2 intermediate

variables like v and w. If w had been missing from F in the example

above the last two IMDIFF parameters could have been omitted. If no

intermediate variable had been involved, the first four parameters

would have been sufficient.

¥)

Note that if there were two or more independent variables, say

x and y, the above procedure could be used to find either dg (x,y)
or dg (x,y) separately. The only changes needed would y

öx
be to express u, v, and w in terms of both x and y instead of x alone

and to specify either x or y, but not both, as the first parameter of

IMDIFF and of DERIV.

H. Differentiation of Two Functions Defined Implicitly

Suppose that u and v are defined implicitly in terms of an

independent variable x by means of two equations, say:

= 0 Fl
(x,u,v) = u . V + c • logg (x)

F2
(x,u,v) = u . sin(x) 2x - v . a 0

Also let

u = g1(x)

v - g2(x)

indicate the dependence of u,v on x.

Let us use SYMAP2 to find du and dv , that is dgl^ and dg2^X^ .
dx dx dx dx

The operator IMDIFF cannot be used directly here, but another operator,

PIMDIF, can. Because of the generality of PIMDIF several specifications

and preliminary steps are needed:

F1=U*V**2+C* LOGE (X)

F2 = U * SIN (X) - V * A ** (2 * X)

F3 = FSYST (Fl, F2)

This forms the system of equations defining the u and v implicitly.

(in principle there could be several equations in several variables.)

Fk = Gl (X) u = g1 (x)

F5 = G2 (X) v = g2 (x)

F6 = SEQ (Fk, F5) sequence

These steps form an ordered sequence (technically different from a

system in SYMAP2) of the functions showing a general dependence of u

and v on x (or on several independent variables if that is appropriate).

kl

FT = SEQ (X) independent

F8 = SEQ (U, V) dependent

These two steps form ordered sequences of the independent variable(s)

and of the dependent variables respectively. Finally,

F9 = PIMDIF (l, 2, FT, F3, F8, F6)

There are always six parameters for PIMDIF, specified in this order:

(1) the number of independent variables

(2) the number of equations (and dependent variables)

(3) the sequence of independent variables (primitives)

(k) the system of equations

(5) the sequence of dependent variables (primitives)

(6) the sequence of dependency functions

Note that FT here is the sequence containing x, not the primitive x

itself.

The result F9 is a system of linear equations, here two equations

in dg (x) and dg (x), which can be solved with SOLVEQ as follows:

dx dx

Fll = DERIV (X, Fk) unknown 1

F12 = DERIV (X, F5) unknown 2

F13 = FSYST (Fll, F12) unknowns

FlU = SOLVEQ (F9, F13, 2) solutions

F15 = ELEM (Fill, 1) solution 1

Fl6 = ELEM (F11+, 2) solution 2

Thus F15 is the derivative dg,(x) and Fl6 is dg„(x), both expressed

dx dx

in terms of x, u, v. If desired they can be displayed using RECONV in

the usual way.

If there had been two independent variables x and y and the

sequences, functions, and numerical parameters of PIMDIF had been

adjusted to show this, then the system F9 would have been two pairs of

equations, with equations 1 and 2 in dg,(x,y) and dg (x,y) and equations

5x~ dx

3 and k in dg (x,y) and dg (x,y) . A set of four equations in four

"dy *Sy
1*2

unknowns is too large for SOLVEQ as implemented on ERLESC 2 at present;

so two separate systems would have to be formed out of F9 using ELEM and

FSYST. This could be done, however, with only a few extra SYMAP2 steps,

and the two systems solved separately. Given a larger core memory on

ERLESC 2, larger systems could be handled directly.

I. Change of Variables

Given a pair, say, of differential equations of the first order

x + y . M^LL =0 J dx

sin (x) + Mziil = o
ay

let us change independent variables from (x,y) to (w,z) where

x = w + z

y = w . z

The SYMAP2 operator CHGVAR was developed for this purpose. Several

preliminary steps and specifications are required:

Fl = G(X,Y)

F2 = X + Y * DERIV (X, Fl)

F3 = SIN (X) + DERIV (Y, Fl)

FU = FSYST (F2, P5)

This forms the system of differential equations to be transformed.

F5 = SEQ (X,Y)

F6 = SEQ (W,Z)

These form two ordered sequences of the old variables and of the new

variables, respectively.

F7 = W + Z x(w,z)

F8 = W * Z y(w,z)

F9 = FSYST (FT, F8)

These state the relations of the old variables in terms of the new, and

form a system of them (in the same order as for the sequence, namely

first x and then y).

Fll = Hl(X,Y) w(x,y)

F12 = H2(X,Y) z(x,y)

P13 = FSYST (Fll, F12)

hi

These state the general dependence of the new variables in terms of the

old (using functions declared in part (5) of the input), and form a

system (in the order w, then z).

Finally,

FlU = CHGVAR (2,2,2, FU, F5, F6, F9, F13)

There are always precisely eight parameters for CHGVAR, namely,

from left to right:

(1) the number of equations q

(2) the number of old variables o

(5) the number of new variables n ^ o

(U) the system of equations

(5) the sequence of old variables

(6) the sequence of new variables

(7) the system, old in terms of new

(8) the system, new as functions of old

The result of CHGVAR, here called FlU, is a system of equations

equivalent to the original but in terms of the new variables, namely

the results wanted. They can be isolated using ELEM of course:

F15 = ELEM (FlU, l)

F16 = ELEM (FlU, 2)

Finally they can be displayed if desired:

F17 = RECONV (F15)

Fl8 = RECONV (F16)

The new equations (see Figure 13) are equivalent to

(w-z) . W . Z . ^ - (w-z) . W.Z . rr*- + W.Z. ^ + W + Z = 0
äw dz aw

-(w-z)"1 . |£ + (w-z)"1 . |S + sin (w + z) = 0
dw v dz v '

and

Incidentally, the operator CHGVAR automatically makes repeated

use of LMDIFF and PLMDIF, while PIMDIF also uses IMDIFF. This

particular example was run on BRLESC 2 and required approximately 0.2

minute, including several displays. The time required depends on the

particular relations, number of variables, number of derivatives present,

etc.

UU

Equations in (x,y) as displayed

Y*(DERIV(X,G(X,Y)))+ X
(DERIV(Y,G(X,Y)))+(SIN(X))

Equations in (w,z) where x=w + z, y=w. z

((W+(-l)^)^(-l))*W*Z**2*(DERIV(W,G(W,Z)))

+(-l)*((W+(-l)*Z)**(-l))*W»Z**2*(DERIV(Z,G(W,Z)))

+W*Z*(DERIV(W,G(W,Z)))

■W

+z

(-l)*((W+(-l)*Z)**(-l))*(DERIV(W,G(W,Z)))

+((W+(-l)«Z)**(-l))*(DERIV(Z,G(W,Z)))

+(SIN(W+Z))

Figure 13. Change of Variables Example

At present there are severe limitations on size in various parts

of SYMA.P2. For CHGVAR at most two old variables, at most two new

variables, and at most three derivatives of first order can be handled.

Some of these restrictions can be relaxed on special request.

J. Taylor's Series in Two Variables

For a more extensive application of SYMA.P2 let us study in some

detail hpw to expand a function of two variables in a Taylor's series

about a point (a,b). The same technique would apply to any function

f(x,y) but for definiteness let us consider f(x,y) = sin (x + y) and

choose (a,b) = (0,0). For some other function f or some other point

(a,b) only the first few manipulations, which specify these, need be

changed; so the "program" is reusable in many Taylor's series contexts.

f(x,y) = f(a,b) + (h |j +k ^)f(x,y)
(a,b)

+ V (h f- + k |-)
n f(x,y) + ^ ni ox V (a^b)

1+5

Here h = x - a and k = y - b and the remainder Pin will be ignored.

Thus repeated derivatives with respect to x and to y and mixed partials
3

like d f will be needed. Further, the substitution of a for x

dx by

and b for y must be done repeatedly. In general the higher derivatives

of functions are much more complex than the functions themselves; so the

character strings tend to get longer and some rather small finite n will

have to be set to avoid overflow of memory blocs (whose size is

preassigned via FORTRAN DIMENSION statements). This problem is less

serious for sin (x + y) than for most functions.

We will make use of the control manipulations introduced earlier

which allow counters and loops. (Without these many similar steps

would be needed for the higher level terms, and additional steps would

have to be added if n were increased.)

The flow diagram shown in Figure Ik will be used to clarify the

SYMAP2 steps as they are introduced. Because of the looping involved,

some strings need to be initialized prior to entering the loops, and

some strings used repeatedly need to be formed early and saved for reuse.

Some copying is needed also.

The i - th order terms in the Taylor series are given by:

A < * k+ k IF-)1 f(x'y)

*icr
(a,b)

J i
k Of

j=o öx äy (a',b)

In the flow diagram boxes numbered 11 through 18 handle the variation

of j from 1 through i and box 19 handles J = 0, the term involving

—7— ' Box 29 provides the variation of i up through n, looping back
dx1

to box 10. As with any program, other sequences of operations could

have been used to the same end.

Box 1 specifies the f(x,y) and the point (a,b), here (0,0), as

well as the desired level of expansion n, say 3- We assume that

k6

START
SPECIFY

Hx.y)-

a —

b -

n —

-Fl

-F101

-F102

•14

X 10

j=l
h'

(h+kt2)1

L!

-II

•F106

F107

F108

11

(i) hi-j kj F33

}jh,1kj/i!-^F34

YES

YES

18

X+F35—Z —^FT09

j*L ? NO

29
L+1-^L
L* n ?

13

STOP
N0| 30

DISPLAY I (af F109)

h = x-a

k=y-b

h+kt2

l = h!

l = (h+kt2)'

1 = LI

f(a,b) = I0

1 = 1

(1=0)

(L=0)

(i=0)

F103

-F104

-F105

F106

-F107

-F108

•F109

-13

12-

d F;

dy

Fll+i /- gii \
\ dxi-idyij

(a,b)

(IV l-JkJ

dy fcb)

21 + j

F35

19

f~ F1
ox

-ä-Fll
** l(a.b)
hi .4-n

" (-S1

2 + F35-^2
fob)

F21

F35

F109

Fiuj~^Fn-j (i= 1,2, ..., L)

Figure Ik. Flow Diagram, Taylor's Series Example.

primitives x, y, and t have been declared. The first SYMAP2 steps are:

F101 = X + Y (x+y)

Fl = SIN (F101) f

These two basic manipulations specify f (x,y). (A single composite

manipulation could have been used, if permitted.) If desired Fl can

be displayed in readable form:

F100 = KECONV (Fl)

The point (a,b) = (0,0) is specified easily:

F101 =0 a

F102 =0 b

The level n is to be a small positive integer, say 3, in index Ik.

One step provides this:

INDEX Ik = 3

This completes the variable part of the program. What follows could

be the same for any reasonable f, any (a,b), and sufficiently small n.

Box 2 forms h = x - a and k = y - b, since various powers of these

are needed and can be built up by repeated multiplication or by

substitution in certain expressions involving them. The combination
2

h + kt raised to various powers can provide the binomial coefficients

and related products such as h k when needed in the loops. Thus we

provide these SYMAP2 steps:

F103 = X - F101 x - a = h

FIOH- = Y - F102 y - b = k

F105 = FlOil * T kt

F105 = F105 * T kt2

F105 = F105 + F103 h + kt2

(The label F105 is reused here merely because the intermediate results

are not needed further and there is a finite limit on the number of

labels permitted.)*

The next few steps, as shown in box 2 of the flow diagram, set

initial values prior to the iterative multiplications of box 10, which

*See SzcZion VI

k8

is within a loop with i varying.

F106 =1 h1 (i = 0)

F107 =1 (h + kt2)1 (i = 0)

F108 =1 i» (i = 0)

Similarly the initial term of the sum which is the Taylor's series

sought is f(a,b). This can be obtained from f(x,y) at Fl by successively

substituting a for x and b for y:

F20 = SUBST (Fl, X, FlOl)

F109= SUBST (F20, Y, F102) f(a,b) = E (i=0)

This completes the initializations except for setting the index i to

unity. This index i, kept at 13, refers to the current order of

derivatives and will vary from 1 (since i = 0 has been taken care of)

to n.

INDEX 13 = 1

We now consider the major loop shown in boxes 10 through 29, with

i held fixed until near the end. The first step of box 10 must be a

numbered manipulation since a jump is made to it from box 29. Let us

use the number 10 and let box numbers and manipulation numbers agree,

merely for convenience. (The first manipulations in boxes 1 and 2 and

certain other boxes do not actually require numbers since there are no

actual jumps to them. They are shown only for ease of reference.)

INDEX II = 1 10 numbered step

The above step sets index j, kept at II, to unity. This index will

vary from 1 through i for fixed i, and the case of j = 0 will be

handled separately in box 19- Certain strings independent of j are

best formed prior to entering the loops and hence are considered here:

F106 = F103 * F106 h1

F107 = F105 * F107 (h + kt2)1

INDEX F10 =13 i

F108 = F10 * F108 ii

Note that F108 is an L-constant representing i'., as needed in all terms

of level i. It is formed by multiplying the L-constant for i (at FIO)

by the previous F108, which was (i-l)l F107 is the expanded form of

U9

(h + kt) for the current i. F106 would also "be a polynomial if a

were not 0, but in this example is a simple power h1 = (x - a)

= (x - 0) = x . Box 10 is now completed and the index j has been set

to 1.

Since there is a jump to box 11 from box 18, the first step of box

11 must be a numbered one:

INDEX F10 = II 11 numbered step

F10 = T ** F10 t^

F10 = F10 * F10 t2^

F51 = SUBST (F107, F10, 0)

F32 = F107 - F31

F33 = SUBST(F32, T, l)

F3U = F33 / F108

The above set of steps generate the needed "coefficient" of

d f , namely I . J h Jk / i'. . Other steps could have been

ox oy

used, but this set accomplishes the goal as follows. F107 is (h + kt)

expanded, equivalent to X y[1 h K t . It contains terms in

"£(■)"
2 h 2i t , t , . . . , t and terms not involving t (m=0). We want to

21 isolate the terms in t , that is those terms for which m = j, and thus

obtain KJ h1-JkJt J. By generating t J at F10, using the first 3

steps of box 11 as shown above, and then replacing this power (only) by

0 in F107, we obtain at F31 all the terms of F107 except the ones

wanted. Then subtracting F31 from F107 gives at F32 exactly the terms

wanted. Replacing t (and indeed all powers of t) by 1 in F32 then

gives at F33 the expression (.) h Jk . (if a or b is not zero, this

is a polynomial in x, y, a, bj otherwise one term.) Finally since F108

contains i'. (see box 10), division of F33 by F108 gives at F3^ the

"coefficient" wanted.

We next evaluate the appropriate derivative
dx1-JdyJ

for the current fixed i and fixed j. One way to do this is to use

50

slightly different notation and a separate set of steps for each j.

Let us introduce box 12 for j=l, box 13 for j=2, etc., as shown on the

expanded flow diagram detail of Figure 15.

Applying this approach we continue box 11 with a series of

decisions on j, up to the allowed maximum that n can have:

INDEX 12 = II - Ik

INDEX 12 = 12 - 1

IF (12, 19) j > n ?

INDEX 12 = 1 - II

IF (12, 12) j = 1 ?

INDEX 12 = 2 - II

IF (12, 13) j = 2 ?

INDEX 12 = 3 - II

IF (12, Ik) J = 3 ?

GO TO 19

A numbered step starts box 12:

F10 = DERIV (Y, Fl)

F12 = VALUE (F10)

F20 = SUBST (F12, X, FlOl)

F22 = SUBST (F20, Y, F102)

F35 = F22 * F3^

GO TO 18

Similarly for box 13:

F10 = DERIV (Y, F2)

F13 = VALUE (F10)

F20 = SUBST (F13, X, FlOl)

F23 = SUBST (F20, Y, F102)

F35 = F23 * F3U

GO TO 18
51

(j > max n)

12 numbered step

<£- Fl = ^f
ay

ox " dy

at (a,b)

times coefficient

13 numbered step

 F2 _ !l
dy F . i-2. 2

öx öy

at (a, b)

times coefficient

NO

'y

-f-F2|, ,, —-F22 dy |(o,b)
F23 «F34 »-F35

YES

^ NO

Figure 15. Detail of Boxes 11 through 18, Taylor's Series

52

Analogous steps apply for box 1^, etc, for each allowed j. Each

of these boxes leads to box 18:

INDEX II = II + 1 18 numbered step

F109 = F35 + F109 enlarged E

INDEX 12 = 13 - II

IF (12, 11) J £ i ?

The above set of steps increases j, accumulates terms into the series,

and if j £ i loops back to box 11 to continue with the new j. Other-

wise box 19 is done next:

F10 = DERIV (X, Fl) 19 numbered step

Fl = VALUE (F10) a _n d
Xf

dx -. i
F20 = SUBST (Fl, X, FlOl)

F21 = SUBST (F20, Y, F102) at (a, b)

Note that in this case the derivative is taken with respect to x, not y

as in boxes 12, 13, etc. Also a different "coefficient", namely h /i'.,

is needed:

F5U - F106 / F108 hX/i:

F35 = F3U * F21 new "term"

F109 = F35 + F109 enlarged E

This completes the accumulation of terms at level i, but some

adjustment is needed before the next i can be handled. The i-th

level derivatives are not at Fl, F2, F3, etc. as needed in box 12, 13

ll+, etc. but rather at Fl, F12, F13, etc. Fl is correct because box

19 was done last at level i and the previous Fl was no longer needed.

F12 was used in box 12 because the old F2 was still needed for box 13, and

similarly for the others. Hence, these must now be copied into place,

say with a loop on j = 2,3, • • - , i as follows:

INDEX II = 2 j = 2

INDEX 12 = 2 - II 21 numbered step

IF (12, 22) j = 2 ?

INDEX 12 = 5 - II

IF (12, 23) j = 3 1

53

INDEX 12 = k - II

IF (12, 24) j = k ?

GO TO 29

F2 = F12 22

GO TO 28

F3 = F13 23

GO TO 28

Fk = FlU 24

GO TO 28

INDEX II = II + 1 28 j + 1 - j

INDEX 12 = 13 - II

IF (12, 21) J * I ?

(Doing the above by a loop is not strictly necessary here, but in

another context this technique might be very useful.)

We are now ready to advance the index i and loop back to box 10 if

required:

INDEX 13 = 13 + 1 29 i + 1 - i

INDEX 12 = Ik - 13

IF (12, 10) i 5 n ?

If 12 is negative, we have the entire Taylor's series at F109 and can

display it in readable form:

F200 = RECONV (FIO9)

The original expression for f(x,y) was destroyed because we reused

label Fl at each level i. If we had wanted to save it, we could have

copied it from Fl to another location in box 1.

The original and final displays are shown in Figure 16.

The above set of expository examples has demonstrated some,

but by no means all, of the capability of SYMAP2. The reader is urged

to consider ways it can be of use to him.

54

FlOO

(SIN(X+Y))

F200

X

+(l,2)*X*(Y**2)

+(l,2)*(X**2)*Y

+(1,6)*(X*»5)

+Y

+(1,6)*(Y*»3)

Figure 16. Principal Output, Taylor's Series Example

VI. PRESENT STATUS OF SYMAP2 AND FUTURE PLANS

The algebraic symbol manipulator SYMAP2 is still experimental

though operational and is continuously being modified. It has been

used for a variety of small applications and a few large ones within

BRL, however; and additional applications are welcome. Local and

other potential users are encouraged to contact the author.

On the BRLESC 2 computer 80000 words of core memory are required

at present for efficient processing of 300-character strings, and longer

symbol strings require more storage than this. Some temporary use of

disc storage as well as 96OOO words of core permits symbol strings up

to 700 characters in length at a cost of greatly increased running

time for disc accesses and exchanges. A much larger core or virtual

memory for BRLESC 2 or its successor is needed for larger problems

requiring strings of 1000 to 2000 characters.

Restrictions on user "programs" of manipulations include the

following at present (96OOO word core memory):

(1) Not more than U0 primitives specified.

(2) Not more than 30 special user functions specified.

(3) Not more than 200 distinct names of results Fi (but names

can be reused if desired).

(h) Not more than 700 characters in any string, including

expanded unsimplified intermediate results.

55

(5) Not more than 11000 characters total in all results saved.

(6) Not more than 9 distinct indexes In used in arrays (but these

indexes can "be used repeatedly).

(7) Not more than 20 distinct counters In (reusable).

(8) Not more than 70 characters per manipulation specification.

(9) Not more than 200 basic manipulations per program (steps

within loops being counted only once).

(10) Not more than 3 simple linear equations in a system to be

solved.

A variety of error prints normally inform the user when such

restrictions are not adhered to. However, some of these restrictions

can be relaxed somewhat, at the expense of others, by special arrange-

ment. Most can be relaxed if additional memory becomes available.

Future extensions of SYMAP2 will probably be in these directions:

(1) Additional standard functions if needed.

(2) Simpler user commands to replace frequently needed

combinations of present basic manipulations.

(3) More options to permit greater user control.

(k) Improved techniques for reuse of storage if released.

(5) An on-line version for use in remote-access or time-sharing

environments if sufficient storage becomes available.

(6) More "natural" displays, with raised exponents, for example.

(7) Fewer restrictions on labels, to allow applications oriented

names.

(8) Alternative versions of SYMAP2 to respond to special needs.

56

REFERENCES

1. L. Fox, ed., Advances in Programming and Non-Numerical

Computation, Pergamon Press, New York, 1966.

2. Peter J. Smith, "Symbolic Derivatives Without List Processing,

Subroutines, or Recursion," BRL Memorandum Report No. 1630, Feb.

1965 (AD U65 252). Also in Communications of the ACM, Vol. 8,

No. 8, August 1965, pp. h9k-h-96.

3. George C. Francis, "SYMAP1 - An Experimental Symbol Manipulation

Program," BRL Memorandum Report No. 2060, August 1970 (AD 712 996).

h. Daniel G. Bobrow, ed., Symbol Manipulation Languages and Techniques,

North-Holland Publishing Company, Amsterdam, 1968.

5. Jean E. Sammet, "An Annotated Descriptor Based Bibliography on the

Use of Computers for Non-Numerical Mathematics," Computing Reviews

7, No. h, July-August 1966.

6. Jean E. Sammet, "An Overall View of FORMAC," IBM Technical Report

No. TROO.I367, November 1965.

7. Andrew D. Hall, Jr., "The ALTRAN System for Rational Function

Manipulation - A Survey," Communications of the ACM, Vol. Ik, No. 8,

August 1971.

8. Ceslovas Masaitis, Georege C. Francis, and Viola Woodward, "Symbolic

Calculation by Computer," BRL Report (to appear).

9. George C. Francis and Viola Woodward, "Designing SYMAP2, An

Algebraic Symbol Manipulation Program," BRL Memorandum Report

(to appear).

10. Lloyd W. Campbell and Glenn A Beck, "BRLESC i/ll FORTRAN," ARDC

Technical Report No. 5, March 1970 (AD 70U 3^5).

57

DISTRIBUTION LIST

NO, OF
COP IES

ORGANIZATION NO, OF

COPIES
ORGANIZATION

12 COMMANDER
DEFENSE DOCUMENTATION
CENTER

ATTN TIPCR
CAMERON STATION
ALEXANDRIA, VA 22314

1 DIRECTOR
ACVANCEO RESEARCH PROJECTS

AGENCY
DEPARTMENT OF DEFENSE
WASH DC 20301

1 COMMANDING GENERAL
U.S. ARMY MATERIEL COMMAND
ATTN AMCDL
WASH DC 20115

1 COMMANDING GENERAL
U.S. ARMY MATERIEL COMMAND
ATTN AMCCP
WASH DC 20315

1 COMMANDING GENERAL
U.S. ARMY MATERIEL COMMAND
ATTN AMCPM-SA

MR. WILKINSON
WASH DC 20315

I COMMANDING GENERAL
U.S. ARMY AVIATION SYSTEMS
COMMAND

ATTN AMSAV-E
12TH AND SPRUCE STREETS
ST LOUIS, MO 63166

COMMANDING GENERAL
U.S. ARMY MATERIEL COMMAND
ATTN AMCRD

DR. J.V.R. KAUFMAN
WASH DC 20315

1 COMMANDING GENERAL
U.S. ARMY ELECTRONICS
COMMAND

ATTN AMSEL-CE
FORT MONMOUTH, NJ 07703

COMMANDING GENERAL
U.S. ARMY MATERIEL COMMAND
ATTN AMCRP-BN
WASH DC 20315

COMMANDING GENERAL
U.S. ARMY MATERIEL COMMAND
ATTN AMCRD-M
WASH DC 20315

COMMANDING GENERAL
U.S. ARMY MATERIEL COMMAND
ATTN AMCRD-TE
WASH DC 20?15

COMMANDING GENERAL
U.S, ARWY MATERIEL COMMAND
ATTN AMCRD-TP
WASH DC 20315

COMMANDING GENERAL
U.S. ARMY MISSILE COMMANC
ATTN AMSMI-AML

AMSMI-RF
AMSMI-RFC

REDSTONE ARSENAL, AL 35809

COMMANDING GENERAL
U.S. ARMY MISSILE COMMANC
ATTN AMSMI-R

AMCPM-LC
AMCPM-PE

REDSTONE ARSENAL, AL 3S8C9

COMMANDING GENERAL
U.S. ARMY TANK-AUTOMOTIVE
COMMAND

ATTN AMSTA-RHFL
WARREN, MI 48C90

59

DISTRIBUTION LIST

NO. OF
COPIES

ORGANIZATION NO. OF
COPIES

ORGANIZATION

COMMANDING OFFICER
U.S. ARMY MOBILITY

EQUIPMENT RESEARCH AND
DEVELOPMENT CENTER

ATTN TECH DOCU CEN,
BLPG 315

AMSME-RZT
FORT BELVOIR, VA 22060

COMMANDING OFFICE«
U.S. ARPY PICAUNNY

ARSENAL
ATTN SMLPA-DW6

SMUPA-CR:-
SKUPA-DS2
SMUPA-CB

DOVER, NJ 078C1

COMMANDING GENFRAL 2
U.S. ARMY MUNITIONS

COMMAND
ATTN AMSMU-RE
DOVER NJ 07801

DIRECTOR
U.S. ARMY MUCOM OPERATIONS 1

RESEARCH GROLP
EDGEWOOD ARSENAL, MD 21010

COMMANDING OFFICER
U.S. ARMY EDGEWOOD ARSENAL
ATTN SMUEA-R

SMUEA-TSTI-L
SMUEA-BL-S, 4

W. SACCO
EDGEWOOD ARSENAL, MD 21010

COMMANDING OFFICER
U.S. ARMY FRANKFORD

ARSENAL
ATTN SMUFA-L1C00,

S. CISMAN 1
PHILADELPHIA, PA 19137

COMMANDING OFFICER
U.So ARMY PICATINNY

ARSENAL 1
ATTN

DCVER

SMUPA-DV
SMUPA-TT
SMUPA-TW
SMUPA-VA6
SMUPA-VE
NJ 078C1

COMMANDING OFFICER
U.S. ARMY PICATINNY

ARSENAL
ATTN SMUPA-V

SfUPA-D
DOVER, NJ 078CI

COMMANDING GENERAL
U.S. ARNY WHITE SANDS

MISSILE RANGE
ATTN STEWS-TE-E,

MR. ELCER
WHITE SANDS FISSILE RANGE,
NEW MEXICO 88002

COMMANDING GENERAL
U.S. ARMY WEAPONS COMMANC
ATTN AfSME-RE

AMSWE-RCA
APSWE-RUF
FLD SVC CIV

ROCK ISLAND, IL 61202

COMMANDING OFFICER
U.S. ARMY ROCK ISLAND

ARSENAL
ROCK ISLAND, IL 61202

COMMANDING OFFICER
U.S. ARMY WATERVLIET

ARSENAL
WATERVLIET, NY 12189

60

DISTRIBUTION LIST

NO, OF
COPIES

ORGANIZATION NO. OF
COPIES

ORGANIZATION

COMMANDING OFFICER
U.S. ARMY HARRY DIAMOND
LABORATORIES

ATTN LIB
AMXDO-TD/002

WASH DC 20438

COMMANDING OFFICER
U.S. ARMY MATERIALS AND

MECHANICS RESEARCH
CENTER

ATTN AMXMR-ATL
WATERTOWN, MA 02172

DIRECTOR
U.S. ARMY ADVANCED
MATERIEL CONCEPTS AGFNCY

2461 EISENHOWER AVENUE
ALEXANDRIA, VA 22314

COMMANDING GENERAL
U.S. ARMY NATICK
LABORATORIES

ATTN AMXREt
DR. D. SIELING

NATICK, MA 01762

COMMANDING OFFICER
U.S. ARVY FOREIGN SCIENCE

AND TECHNOLOGY CENTER
FEDERAL OFFICE BLDG
220 7TH STREET, NE
CFARLOTTESVILLE, VA 22901

DIRECTOR
U.S. ARMY AIR MOBILITY

RESEARCH AND DEVELOPMENT
LABORATORY

AMES RESEARCH CENTER
MCFFETT FIELD, CA 94035

DIRECTOR
U.S. ARMY AERONAUTICAL

RESEARCH LABORATORY
MOFFETT NAVAL AIR STATION,
CALIFORNIA 94035

COMMANDING GENERAL
U.S. ARMY COMHAT
DEVELOPMENTS CO^ANO

ATTN CDCMR-I
CDCMR-W
CDCMR-U
CDCMR-P (2 CYS)

FORT BELVOIR, VA 22060

COMMANDING GENERAL
U.S. ARMY COMBAT

DEVELOPMENTS COMMAND
STRATEGIC STUDIES

INSTITUTE
CARLISLE BARRACK, PA 17013

COMMANDING GENERAL
U.S. AHMY COMBAT
DEVELOPMENTS COMMAND

COMBAT SYSTEMS GRUUP
FORT LEAVENhORTH, KS 6602

COMMANDING GENERAL
U.S. ARMY COPBAT
DEVELOPMENTS COMMAND

EXPERIMENTATION COMMANC
FORT ORD, CA 93941

COMMANDING OFFICER
U.S. ARMY COMBAT

DEVELOPMENTS COMMAND
INSTITUTE OF SPECIAL

STUDIES
FORT BELVOIR, VA 22060

61

DISTRIBUTION LIST

NO, OF
COP IES

ORGANIZATION

COMMANDING OFFICER
U.S. ARMY COMBAT

DEVELOPMENTS COMMAND
NUCLEAR AGENCY
FORT BLISS, TX 79916

COMMANDING OFFICER
U.S. ARMY COMBAT

DEVELOPMENTS COMMAND
AIR DEFENSE AGENCY
ATTN MR. J. LAGOUROS
FCRT BLISS, TX 79916

NO. OF
COPIES

ORGANIZATION

COMMANDING OFFICER
U.S. ARMY COMBAT
DEVELOPMENTS COPfAND

TRANSPORTATION AGENCY
FORT EUSTIS, VA 23604

COMPANDING GENERAL
U.S. ARMY COMBAT
DEVELOPMENTS COPLAND

PERSONNEL AND LOGISTICS
SYSTEMS GROUP

FORT LEE, VA 23801

1 COMMANDING OFFICER
U.S. ARMY COMBAT
DEVELOPMENTS COMMAND

ARMOR AGENCY
ATTN CAGAR-PC
FCRT KNOX, KY 40121

1 COMMANDING OFFICER
U.S. ARMY COMBAT

DEVELOPMENTS COMMAND
FIELD ARTILLERY AGENCY
FORT SILL, OK 73504

1 COMMANDING OFFICER
U.S, ARMY COMBAT

DEVELOPMENTS COMMANO
CHEMICAL-B10L0GICAL-

RADIOLOGICAL AGENCY
FORT MCCLELLAN, AL 36205

1 COMMANDING OFFICER
U.S. ARMY COMBAT

DEVELOPMENTS COMMAND
ENGINEER AGENCY
FCRT BELVOIR, VA 22060

I COMMANDING OFFICER
U.S. ARMY COMBAT

DEVELOPMENTS COMMANO
INFANTRY AGENCY
FORT BENNING, GA 319C5

COMMANDANT
U.S. ARMY ARTILLERY ANT

MISSILE SCHOOL
ATTN AKPSIAS-G

AKPSIAS-CA
AKPSIAS-G-RK

FORT SILL, OK 73504

HQ DA (DACS-CW)
WASH OC 20310

HQ DA (DAFO)
WASH OC 20310

HQ DA IDAFD-ZAA)
MR. A. GOLLB

WASH DC 20310

HQ DA (DALO)
WASH DC 20310

HQ DA (DARD-CDC)
WASH DC 20310

HQ DA (DARD-PSM
WASH DC 20310

HQ DA (DARD-ARS)
WASH DC 20310

HQ DA <DARO-ARP-M)
WASH DC 20310

62

DISTRIBUTION LIST

NO« OF
COPIES

ORGANIZATION NO. OF
COPIES

ORGANIZATION

1 COMMANDING GENFRAL
U.S. ARMY TOPOGRAPHIC

COMMAND
ATTN TPC (142C0)
6500 BROOKS LANE
WASH DC 203L5

1 COMMANDING OFFICER
U.S. ARMY ENGINEER

WATERWAYS
EXPERIMENTATION AGENCY

ATTN DR. A. SAKURAI
P.O. BOX 631
VICKSBURGt MS 39181

2 DIRECTOR
U.S. ARMY RESEARCH OFFICE
ATTN DR. I. HERSHNER

MR. M. WFIK, JR.
3045 COLUMBIA PIKE
ARLINGTON, VA 22204

1 COMMANDING OFFICER
U.S. ARMY RESEARCH OFFICE

(DURHAM)
ATTN DR. A. GALBRAITH
BOX CM, DUKE STATION
DURHAM, NC 27706

I DEPARTMENT OF ORDNANCE
U.S. MILITARY ACADEMY
ATTN ASSOC PRCF,

MR. BURTON
WEST POINT, NY 10996

1 COMMANDANT
U.S. ARMY WAR COLLEGE
CARLISLE BARRACK, PA 17013

1 COMMANOANT
U.S. ARMY COMMAND AND

GENERAL STAFF COLLEGE
FCRT LEAVENWORTH, KS 6602

1 CHIEF, U.S. ARMY STRATEGY
AND TACTICS ANALYSIS
GROUP

8120 WOODMONT AVENUE
BETHESDA, MD 20014

1 MATHEMATICS RESEARCH
CENTER

U.S. ARMY
UNIVERSITY OF WISCONSIN
ATTN DR. J. RCSStR
MADISON, WI 53706

3 COMMANDER
U.S. NAVAL AIR SYSTEMS
COMMAND

ATTN AIR-604
WASH DC 20360

3 COMMANDER
U.S. NAVAL ORCNANCE

SYSTEMS COMMAND
ATTN ORD-9132
WASH DC 20360

1 COMMANDER
U.S. NAVAL MISSILE CENTER
POINT MUGU CA 93041

1 COMMANDER
U.S. NAVAL SHIP RESEARCH

AND DEVELOPMENT CENTER
WASH OC 20007

1 COMMANDER
U.S. NAVAL ORDNANCE

LABORATORY
ATTN DR. J. W. ENIG
SILVER SPRING MD 20910

2 DIRECTOR
U.S. NAVAL RESEARCH
LABORATORY

ATTN CODE 7600, TECH LIE
WASH DC 20390

63

DISTRIBUTION LIST

NO. OF
COPIES

ORGANIZATION NO, OF
COPIES

ORGANIZATION

1 COMMANDER
U.S. NAVAL WEAPONS
LABORATORY

DAHLGREN, VA 22448

1 AFATL (OLRVl
EGL IN AFB, FL 32542

1 AFATL (DLRD)
EGL IN AFB, FL 32542

1 AFATL (DLR)
EGLIN AFB, FL 32542

1 AFWL (WLLl
KIRTLAND AFB, NM 87117

1 OIRECTOR
NATIONAL BUREAU OF

STANDARDS
ATTN OR, W. H. PELL
DEPARTMENT OF COMMERCE
WASH DC 20234

1 HEADQUARTERS
U.S. ATOMIC ENERGY
COMMISSION

ATTN TECH LIB
fcASH DC 20545

2 DIRECTOR
LAWRENCE LIVERMORE
LABORATORY

ATTN DR. W. NOH
MR. M. WILKINS

P.O. BOX 808
LIVERMORE, CA 94550

I OIRECTOR
LOS ALAMOS SCIENTIFIC
LABORATORY

P.O. BOX 1663
LOS ALAMOS, NM 87544

OIRECTOR
NASA SCIENTIFIC AND

TECHNICAL INFORMATION
FACILITY

ATTN SAK/OL
P.O. BOX 33
COLLEGE PARK, HD 20740

DIRECTOR
NATIONAL AERONAUTICS ANC

SPACE ADMINISTRATION
LANGLEV RESEARCH CENTER
LANGLEY STATION
HAMPTON, VA 23365

DIRECTOR
NATIONAL AERONAUTICS ANC

SPACE ADMINISTRATION
LEWIS RESEARCH CENTER
21000 8R00KPARK RUAD
CLEVELANO, OH 44135

AVCO CORPORATION
RESEARCH AND ADVANCED
DEVELOPMENT CIVISION

201 LOWELL STREET
WILMINGTON, MA 01887

BATTELLE MEMORIAL
INSTITUTE

ATTN MR. FREC TItTZEL
(STOIAC)

505 KING AVE.
COLUMBUS, OH 43201

FIRESTONE TIRE AND RUBBER
COMPANY

ATTN LIB
MR. M. Co CUX

1200 FIRESTONE PARKWAY
AKRON, OH 44317

64

DISTRIBUTION LIST

NO. OF
COP I ES

ORGANIZATION NO. OF
COPIES

ORGANIZATION

GENERAL MOTORS CORPORATION I
DEFENSE RESEARCH
LABORATORIES

ATTN MR. J. GEHRING
DR. A. CHARTERS

SANTA BARBARA* CA 93108 1

THE MARTIN-MARIETTA
CORPORATION

ATTN TECH LIB 1
BALTIMORE* MD ?1203

THE MARTIN-MARIETTA
CORPORATION

AEROSPACE DIVISION
ORLANDO, FL 32B05

CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF PHYSICS
ATTN PROF. E. H. PUGH
PITTSBURGH PA 15213

CORNELL UNIVERSITY
ATTN PROFESSOR G. LUDFORD
ITHACA, NY I4fa50

DREXEL INSTITUTE OF
TECHNOLOGY

DEPARTMENT OF
AERONAUTICAL ENGINEERING

ATTN PROF PEI CHI CHOU
32ND AND CHESTNUT STS.
PHILADELPHIA, PA 19104

1 THE RAND CORPORATION 2
1700 WAIN STREET
SANTA MONICA, CA 904C6

1 SANDIA CORPORATION
ATTN INFO DIST DIV 1
P.O. BOX 5800
ALBUROUEROUE, NM 87115

1 SHOCK HYDRODYNAMICS, INC.
ATTN DR. L. ZERNOW 1
15010 VENTURA BOULEVARD
SHERMAN OAKS, CA 9UC3

1 UNITED AIRCRAFT
CORPORATION 1

MISSILES AND SPACE SYSTEMS
GROUP

HAMILTON STANDARD DIVISION
WINCSOR LOCKS, CT .06096 1

I BROUN UNIVERSTIY
DIVISION OF ENGINEERING
PROVIDENCE, RI 02912

HARVARD UNIVERSTIY
ATTN PROF. G. BIRKHOFF

PROF. G. CARRIER
CAMBRIDGE, MA 02139

11T RESEARCH
ATTN LIB
10 WEST 35TH
CHICAGO, IL

INSTITUTE

STREET
60616

JOHNS HOPKINS UNIVERSITY
ATTN PROF. C. TRUESDELL
34TH AND CHARLES STS.
BALTIMORE, MD 21218

LINCOLN LABORATORY (MIT)
244 WOOD STREET
LEXINGTON, MA 02173

NEW YORK UNIVERSITY -
COURANT INSTITUTE

ATTN PROF. P. GARABEDIAN
NEW YORK, NY 10012

65

DISTRIBUTION LIST

NO. OF
COPIES

ORGANIZATION NO. OF
COPIES

ORGANIZATION

1 PENNSYLVANIA STATE I
UNIVERSITY

ENGINEERING MECHANICS
DEPARTMENT

ATTN PROF N. DAVIDS
UNIVERSTIY PARK, PA 16802

1
2 STANFORO RESEARCH

INSTITUTE
ATTN DR. M. COWPERTHWAITE

DR. M* EVANS I
333 RAVFNWOOO AVENUE
WENLO PARK, CA 94025

1 STEVENS INSTITUTE OF I
TECHNOLOGY

DAVIDSON LABORATORY
ATTN DR. C. GROSCH
HOBOKEN, NJ C7030 1

1 UNIVERSITY OF CALIFORNIA
ATTN PROF. M. PROTTER
BERKELEY, CA 94704

UNIVERSITY OF CALIFORNIA
AERONAUTICAL SCIENCES
DIVISION

ATTN PROF. P. HOLT
BERKELEY, CA 94704

UNIVERSITY OF CELAWARE
ATTN PROF. H. APES
NEWARK, DE 19711

UNIVERSITY OF MARYLAND
ATTN PROF. ¥. KAKTIN
COLLEGE PARK, KC 20740

UNIVERSITY OF LTAH
HIGH VELOCITY LABORATORY
SALT LAKE CITY, UT 84112

UNIVERSITY OF WISCONSIN
ATTN PROF. R. GUNDERSON
MILWAUKEE, MI 53200

ABERDEEN PROVING GROUND

CH, TECH LIB
MARINE CORPS LK OFC
CDC LN OFC
TECH DIR., USAHEL

66

Uno Lat-.üified
Security Cl««»ific«tion

DOCUMENT CONTROL DATA -R&D
(Stcurlty clammltlcmtlon ol till», body of abmtract and Indaxlng annotation mutt 6« antarad whan tha ownll rtport Im clammlllad)

I. ORIGINATING ACTIVITY (Corporal* author)
U.S. Army Aberdeen Research and Development Center
Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

»a. REPORT SECURITY CLARIFICATION

Unclassified
aft. GROUP

3. REPORT TITLE

SYMAP2- An Operational Computer-Based Algebraic Symbol Manipulator

4. DESCRIPTIVE NOTES (Typ* ol ropott and Inelutlr* data»)

». AUTHOR(S) (Pirn mm, mlddta Initial, laat nama)

George C. Francis

«. REPORT DATE

■Tuue 1972
7«. TOTAL NO. OF PA6ES

66
70. NO. OF REFS

10
ma. CONTRACT OR GRANT NO.

6. PROJECT NO. RDT&E No. lT06ll02All4B

M. ORIGINATOR'S REPORT NUMBER(S)

BRL Memorandum Report No. 2199

»D. OTHER REPORT NO(S) (Any otfiar numbers that may b* ammlgnad
Uli* raporl)

d.

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

US Army Materiel Command
Washington, D. C.

IS. ABSTRACT
SYMAP2, a FORTRAN computer program for symbolic manipulation of algebraic

forms, is operational on the BRLESC 2 computer. FORTRAN-like formulas can be built up,
combined, displayed, differentiated, modified through substitution or change of
variables, and operated on in various other ways, either to verify or eliminate the
need for many tedious and lengthy hand transformations. No knowledge of FORTRAN
programming as such is required for use of SYMAP2. This report includes numerous
examples with detailed explanation of each.

DD • MOV •• 1473 OBSOLETE fOm ARMY UBS. Unclassified
Security Classification

Unclassified
Security Classification

KEY »OKOi

Symbol manipulation
Algebraic forms
Functions of several variables
Rational or approximate arithmetic
Substitution
Automatic simplifications
Symbolic differentiation
Symbolic integration
Expansion of sums or products
Solution of linear equations
Change of variables
Masaitis L-System
Non-numeric computer applications
BRLESC 2 computer program

Unclassified
Security Classification

